导入数据...
【研究生指导团队】光场传输和调控
[物理与电子工程学院]  [手机版本]  [扫描分享]  发布时间:2021年9月10日
  查看:3467
  来源:

 

导师队伍简介

1. 季小玲(博士、教授):四川大学理学博士、国务院政府津贴获得者、中国光学学会环境光学专业委员会委员、四川师范大学特聘教授、四川师范大学学报编委。主持国家自然科学基金面上项目4项,以第一作者或通讯作者在国际著名学术刊物Optics LettersOptics Express发表SCI收录论文100余篇

2. 王涛(博士、副教授):1984年出生,2013年毕业于浙江大学物理系,理学博士。四川省学术与技术带头人后备人选,四川师范大学狮山学者杰出青年学者,四川师范大学251人才项目获得者。长期从事光波散射与光场调控的研究,主持国家自然科学基金项目1项,在Progress in Optics, Optics LettersOptics ExpressOptics Communications等学术刊物发表论文50余篇。

3. 贾新鸿(博士、副教授):1977年出生,2013年毕业于电子科技大学通信与信息工程学院,工学博士。长期从事光纤光学、分布式光纤传感、光子信息处理等研究。主持国家自然科学基金青年项目与四川省科技厅面上项目各1项。曾获电子科技大学优秀博士学位论文培育基金与四川师范大学“251”人才培养工程资助。在OFS(国际光纤传感大会)APOS(亚太光纤传感大会)、亚洲通信与光子学会议(ACP)等学术会议上作口头报告7次。以第一或合作作者发表SCI论文30余篇。

4. 李晓庆(博士、副教授):1984年出生,2014年毕业于四川大学物理系光学专业,理学博士。主要从事激光传输与控制方面的研究,以第一作者在Optics & Laser TechnologyApplied OpticsOptics Communications等学术刊物发表论文共18篇。主持国家自然科学基金青年项目1项、四川师范大学251人才项目1项。

5. 柳澎(博士、讲师):1992年出生,2020年毕业于哈尔滨工业大学物理学院物理系,理学博士。长期从事光敏材料的制备和光学体全息存储的研究,在Optics ExpressPolymersOptical Materials Express等学术期刊发表论文16篇。

 

研究方向简介

本研究团队长期从事光束传输和光场调控的研究工作,在长期的教学和科研经历中形成了特色鲜明、在国内外具有较强影响力的研究方向。主要包括:强激光大气传输的非线性Kerr效应、热晕效应和湍流效应、光波散射与光探测、光束传输与调控技术、光学全息存储、光纤传感与光子信息处理技术等。相关研究达到国内先进水平,其成果对航空、国防、信息的存储复用、全息诊断以及医学检测、结构健康与地质灾害监测等方面有重要意义。

1. 高功率激光在非均匀大气中传输的自聚焦效应

人类在探索宇宙的同时,也产生了大量太空垃圾,这给航天器正常运行和宇航员人身安全造成了严重威胁。地基激光清除空间碎片是一种重要且有效的方法。在地基激光空间碎片清除应用中,不可避免地遇到高功率激光上行大气传输问题,并且激光功率已远远超过大气非线性自聚焦临界功率。高功率激光上行大气传输中传输的非线性和线性效应是影响碎片靶面光束质量的重要物理因素。近年来,我们团队研究了大气非线性自聚焦效应、大气群速度色散效应、大气湍流效应和激光衍射效应等对高功率激光上行大气传输特性的影响,提出了提高碎片靶面光束质量的方法,为激光空间碎片清除等实际应用提供理论依据。

能源和环保问题是人类今后将面临的两大严峻问题。地球之外有丰富的太阳能,利用激光辐射把转换的太阳能从空间轨道输运到地面是一个全球性的再生能源新概念。但这项技术到实际应用还有许多概念性和技术性的问题尚未解决,主要困难之一是:需要大型的空间精密聚焦光学器件和大型的地面接收设备。但是,研究表明:利用高功率激光在大气中的自聚焦效应可以减少对激光发射器和接收器尺寸的要求。近年来,我们团队对此问题开展深入研究,取得了具有创新性的研究成果,为高功率激光束从空间轨道输运到地面提供了理论基础。

2. 高功率激光在大气中传输的热晕和湍流效应

激光武器是一种定向能武器,利用强大的定向发射的激光束直接毁伤目标或使之失效,它是目前正在迅猛发展的高技术新概念武器。大气非线性热晕效应和大气湍流效应是制约高功率激光系统性能的主要物理因素,国内外学者对此开展了深入研究,我们团队也针对国家需求开展了一系列的理论研究,并编制了多个数值模拟仿真程序,研究成果可为激光毁伤提供数据支撑,辅助激光高能系统决策。

3. 光波散射与光探测技术

光波经介质散射后的统计光学特性与散射介质的结构特征密切相关,这一现象为散射介质结构特征的测量提供了可能,在遥感、探测,特别是医学检测方面具有重要的意义。基于上述原因,我们系统地研究光波散射过程中的基本物理问题,如散射过程中光强变化规律、相干性变化规律、光谱变化规律等,致力于建立散射场的光学特性与散射场结构特征的关系,从而寻求便捷、准确的重构散射介质结构特征的方法,为介质结构特征的测量提供理论依据。

4. 光纤传感与光子信息处理技术

分布式光纤传感可实现数万传感点物理参量同时感知。本方向针对制约传感信噪比与性能的关键物理问题及其解决方案开展系统性研究,力图实现高分辨、超长距离与多参数测量;开展分布式光纤传感新概念、新结构、新机理与新应用研究。此外,本方向还针对基于非线性光子器件的高速光计算开展研究。相关代表性工作包括:研究了频率梳布里渊光时域分析(BOTDA)传感器的非线性影响;提出了基于循环码的BOTDA泵浦消耗抑制方法;首次提出一种基于前向受激布里渊散射(FSBS)的分布式传感信号增强新概念;实现了150 km超长跨距的布里渊传感快速测量;研究了互耦时延半导体激光器的光子储备池特性。

5. 光敏材料的体全息存储技术

针对强冲击载荷条件下对高速(几km/s)喷射粒子的大小、形状、分布等关键参数及其时空演化过程,开展基于高重频超短脉冲激光的角度复用多幅激光全息记录材料的性能研究,包括多幅激光全息的角度复用技术、高性能全息记录材料的配方与记录特性和高速瞬态粒子场全息图的对比度、信噪比及其影响因素等,为时间分辨的多幅高速粒子场激光全息诊断技术的建立提供技术支撑。

 

人才培养情况

团队人才培养成效明显,毕业学生活跃于各类学校教学、科研一线,部分学生已成为所在高校、中学的骨干力量。研究生以第一作者在国际著名学术刊物《Optics Letters》和《Optics Express》等发表SCI收录论文70余篇1人次获四川省优秀硕士学位论文奖,7人次获四川师范大学优秀硕士学位论文奖,9人次获国家奖学金4人次获四川省优秀毕业生称号,1人获第三届全国光学青年学术论坛优秀论文奖,1人获《中国激光》20178优秀论文8名硕士研究生继续攻读博士学位。研究生以第一作者发表在《JOSA A》上的2篇论文分别于2020年和2021年被评为“Spotlight on Optics” 论文和“Editor’s Picks” 论文,其中优秀毕业生代表介绍如下:

1.      2009级硕士生窦玉玲,以一作或通讯作者在Opt. ExpressPhys. Rev. AAppl. Phys. BOpt. Commun.等国际著名学术期刊发表SCI收录论文共7篇,现为北京理工大学物理学院教师;

2.      2012级硕士生陆璐, 以第一或通信作者发表SCI论文15篇,其中1ESI高引论文,4篇封面论文,主持1项国家自然科学基金青年项目和1项中国博士后面上项目,现为南京师范大学副教授、硕导、校青年学术骨干;

3.      2014级硕士生邓涵凌,在读期间以第一作者在国际著名学术刊物Optics LettersOptics Express发表SCI收录论文2篇,曾就职于川北医学院,现为中国科学院博士研究生;

4.      2015级硕士生张雨秋,在读期间以第一作者在国际著名学术刊物Optics Express上发表SCI收录论文3篇,现为国防科技大学博士研究生;

5.      2015级硕士生伍浩,在读期间以第一作者发表学术论文3篇,现为南开大学博士研究生;

6.      2016级硕士生蒋祯菲,以第一作者发表学术论文5篇,现为美国密苏里大学博士研究生;

7.      2018级硕士生王欢,在读期间以第一作者在国际著名学术刊物Optics Letters等发表SCI收录论文3篇;

8.      2018级硕士生邓宇,在读期间以第一作者在国际著名学术刊物Optics Express等发表SCI收录论文3篇,现为国防科技大学博士研究生。

 

科研项目情况

1.     国家自然科学基金面上项目(No. 61775152),项目名称:地基空间碎片清除中宽带脉冲激光大气传输相关物理问题研究,时间:2018.1—2021.12,负责人:季小玲.

2.     国家自然科学基金面上项目(No. 61475105),项目名称:海洋湍流对激光传输特性和光学成像的影响,时间:2015.1—2018.12,负责人:季小玲.

3.     国家自然科学基金面上项目(No. 61178070),项目名称:湍流大气中激光能量输运的相关问题研究,时间:2012.1-2015.12,负责人:季小玲

4.     国家自然科学基金面上项目(No. 60778048),项目名称:高功率激光束通过湍流大气的传输特性和远场光束质量研究,时间:2008.1-2010.12,负责人:季小玲

5.     国家自然科学基金青年科学基金项目(No. 11404231),项目名称:光波经半软边介质散射后的统计光学特性及其逆问题研究,时间:2014.1-2017.12,负责人:王涛

6.     国家自然科学基金青年项目(No. 61205079),项目名称:基于泵浦-探测频率梳的新型布里渊传感并行重构与高空间分辨兼容性问题研究,时间:2013.1-2015.12,负责人:贾新鸿

7.     国家自然科学基金青年科学基金项目(No. 61505130),项目名称:热晕对高功率列阵激光大气传输光束质量的影响, 20161-201812月,负责人:李晓庆

8.     四川省科研厅面上项目(No. 2019YJ0530),项目名称:面向地质灾害与工程结构监测预警的高分辨混沌激光雷达感知研究,时间:2019.1-2021.12,负责人:贾新鸿

9.     中国科学院大气成分与光学重点实验室开放课题基金,项目名称:大气湍流对畸变激光束传输特性的影响,时间:2011.1-2012.12,负责人:季小玲

10. 横向项目,湖北航天技术研究院总体设计所,项目名称:强光链路效应仿真软件研制,时间:2019.6-2020.12,负责人:季小玲

11. 横向项目,湖北航天技术研究院总体设计所,项目名称:激光大气传输数值模拟仿真研究,时间:2014.9-2015.8 负责人:季小玲

12. 横向项目,西南技术物理研究所,项目名称:大气光传系统及软件,时间:2014.5-2015.6,负责人:季小玲

 

代表性学术论文 (*表示通讯作者)

1.     Huan Wang, Xiaoling Ji*, Deng Yu, Xiaoqing Li, Yu Hong, Theory of the quasi-steady-state self-focusing of partially coherent light pulses in nonlinear media. Optics Letters, 2020, 45 (3), 710-713.

2.     Huan Wang, Xiaoling Ji*, Hao Zhang, Xiaoqing Li and Yu Deng, Propagation formulae and characteristics of partially coherent laser beams in nonlinear media, Optics Letters, 2019, 44(4):743-746.

3.     Hanling Deng, Xiaoling Ji*, Xiaoqing Li, Xianqu Wang, Effect of spherical aberration on laser beam self-focusing in the atmosphere, Optics Letters, 2015, 40(16): 3881-3884.

4.     T. Wang, X. Ji, and D. Zhao*, “Equivalence theorem for the spectral density of light waves on weak scattering,”Optics Letters, 39, 3837-3840 (2014).

5.     T. Wang and D. Zhao*, “Effects of source correlation on the spectral shift of light waves on scattering,” Optics Letters, 38, 1545-1547 (2013).

6.     T. Wang and D. Zhao*, “Condition for far-zone spectral isotropy of an electromagnetic light wave on weak scattering,” Optics Letters, 36, 328-330 (2011).

7.     T. Wang and D. Zhao*, “Determination of pair-structure factor of scattering potential of a collection of particles,” Optics Letters. 35, 318-320 (2010).

8.     T. Wang and D. Zhao*, “Condition for the invariance of the spectral degree of coherence of a completely coherent light wave on weak scattering,” Optics Letters, 35, 847-849 (2010).

9.     T. Wang and D. Zhao*, “Scattering theory of stochastic electromagnetic light waves,” Optics Letters, 35, 2412-2414 (2010).

10. T. Wang and D. Zhao*, “Polarization-induced coherence changes of an electromagnetic light wave on scattering,” Optics Letters, 35, 3108-3110 (2010).

11. Jing Hu, Xiaoling Ji*, Huan Wang, Yu Deng, Xiaoqing Li, Tao Wang, Hao Zhang, Influence of Kerr nonlinearity on propagation characteristics of twisted Gaussian Schell-model beams, Optics Express, 2021, 29(15): 23393- 23407.

12. X. Pan, K. Cheng, X. Ji and T. Wang*, “Manipulating far-zone scattered field by convolution of different types of weight function,” Opt. Express 28, 16869-16878 (2020).

13. Yu Deng, Huan Wang, Xiaoling Ji *, Xiaoqing Li, Hong Yu, Lifeng Chen, Characteristics of high-power partially coherent laser beams propagating upwards in the turbulent atmosphere Optics Express, 2020, 28(19): 27927-27939.

14. Xiaoli Fan, Xiaoling Ji*, Hong Yu, Huan Wang, Yu Deng, Lifeng Chen, Kerr effect on propagation characteristics of Hermite-Gaussian beams, Optics Express, 2019, 27(16): 23112-23123.

15. Yu Deng, Xiaoling Ji*, Hong Yu, Xiaoqing Li, Huan Wang, Lifeng Chen, Uniform irradiation generated by beam self-focusing in the inhomogeneous atmosphere, Optics Express, 2019, 27(10): 14585-14593.

16. Yuqiu Zhang, Xiaoling Ji*, Hao Zhang, Xiaoqing Li, Tao Wang, Huan Wang, Yu Deng, Self-focusing and group-velocity dispersion of pulsed laser beams in the inhomogeneous atmosphere, Optics Express, 2018, 26(11): 14617-14625.

17. H. Wu, X. Pan, Z. Zhu, T. Wang* and K. Cheng, “Equivalence theorem of light waves on scattering from media with different types,” Opt. Express 25, 21410-21418 (2017).

18. Hao Wu, Xiaoning Pan, Zhanghang Zhu, Xiaoning Ji, and Tao Wang*, “Reciprocity relationsof an electromagnetic light wave on scattering from a quasi-homogeneous anisotropic medium,” Optics Express, 25, 11297-11305 (2017).

19. Yuqiu Zhang, Xiaoling Ji*, Xiaoqing Li, Qiang Li, and Hong Yu, Self-focusing effect of annular beams propagating in the atmosphere, Optics Express, 2017, 25(18): 21329-21341.

20. Yuqiu Zhang, Xiaoling Ji*, Xiaoqing Li, Hong Yu, Thermal blooming effect of laser beams propagating through seawater, Optics Express, 2017, 25(6): 5861-5875.

21. Xiaoling Ji*, Halil T. Eyyuboğlu, et al., Propagation of an Airy beam through the atmosphere, Optics Express, 2013 21(2): 2154-2164.

22. Xiaoling Ji*, Halil T. Eyyuboglu, Yahya Baykal, Influence of turbulence on the effective radius of curvature of radial Gaussian array beams, Optics Express, 2010, 18(7): 6922-6928.

23. Xiaoling Ji*, et al., Directionality of general beams, Opt. Express, 2008, 16(23): 18850-18856.

24. Yuqiu Zhang, Xiaoling Ji*, Xiaoqing Li, Qiang Li, and Hong Yu, Self-focusing effect of annular beams propagating in the atmosphere, Optics Express, 2017, 25(18): 21329-21341.

25. Hanling Deng, Xiaoling Ji*, Xiaoqing Li, Hao Zhang, Xianqu Wang, Yuqiu Zhang, Effect of spatial coherence on laser beam self-focusing from orbit to the ground in the atmosphere, Optics Express, 2016, 24 (13): 14429-14437.

26. Lu Lu, Xiaoling Ji*, Yahya Baykal, Wave structure function and spatial coherence radius of plane and spherical waves propagating through oceanic turbulence, Optics Express, 2014, 22(22): 27112-27122.

27. Lingyu Dou, Xiaoling Ji*, et al., Propagation of partially coherent annular beams with decentered field in turbulence along a slant path, Optics Express, 2012, 20(8): 8417- 8430.

28. Huan Wang, Xiaoling Ji*, Yu Deng, Xiaoqing Li, Tao Wang, Hong Yu and Qiang Li, Effect of spatial coherence on laser space-debris removal in the inhomogeneous atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 2019, 235: 244-249.

29. Xiaoling Ji*, et al., Propagation of second-order moments of general truncated beams in atmospheric turbulence, New Journal of Physics, 2011, 13: 103006.

30. Xiaoqing Li, Xiaoling Ji*, Halil T. Eyyuboğlu, Yahya Baykal, Turbulence distance of radial Gaussian Schell-model array beams, Applied Physics B, 2010, 98(2-3): 557-565.

31. S. Zheng, C. Yuan, X. Ji and T. Wang*, “Ring-shaped twisted Gaussian Schell-model array beams,” J. Opt. Soc. Am. A 37(3), 444-449 (2020).

32. C. Yuan, S. Zheng, X. Ji and T. Wang*, “Hollow rectangular multi-Gaussian Schell-model source,” J. Opt. Soc. Am. A 37(9), 1490-1495 (2020).

33. Z. Jiang, Z. Huang, K. Cheng and T. Wang*, “Spectral behavior of light waves on scattering from a semi-soft-boundary medium with spectral dependence,” J. Opt. Soc. Am. A 36(3), 443-449 (2019).

34. Z. Zhu, H. Wu, K. Cheng and T. Wang*, “Ring-shaped optical coherence lattice distribution produced by light waves on scattering,” Opt. Commun. 434, 157-162 (2019).

35. Z. Wang, Z. Jiang, X. Ji and T. Wang*, “Degree of paraxiality of an electromagnetic multi-Gaussian Schell-model beam,” J. Opt. Soc. Am. A 36(6), 1033-1038 (2019).

36. T. Wang, Z. Zhu, Z. Wang and K. Cheng, “Manipulating far-zone scattered field by controlling distribution characteristics of a particulate medium,” J. Opt. Soc. Am. A 35(11), 1968-1973 (2018).

37. L. Zhu, Z. Jiang, K. Cheng and T. Wang*, “Degree of paraxiality of an anisotropic generalized multi-Gaussian Schell-model beam,” J. Opt. Soc. Am. A 35(6), 1034-1038 (2018).

38. T. Wang, D. Hay, H. Wu and Z. Shi, “Spectral shift of a light wave on scattering from an ellipsoidal particle with arbitrary orientation,” J. Opt. Soc. Am. A 34(4), 493-497 (2017).

39. Xiaoling Ji*, et al., Superimposed partially coherent beams propagating through atmospheric turbulenceJ. Opt. Soc. Am. B, 2008, 25(5): 825-833.

40. Xiaoqing Li, Xiaoling Ji*, Propagation characteristics of decentred annular beams through non-Kolmogorov turbulence, J. Opt. Soc. Am. A, 2014, 31(1): 172-182.

41. Zhouling Ding, Xiaoqing Li*, Jianyong Cao, Xiaoling Ji, Thermal blooming effect of Hermite–Gaussian beams propagating through the atmosphere, J. Opt. Soc. Am. A, 2019, 36(7) 1152-1159.

42. Xiaoqing Li, Xiaoling Ji*, Angular spread and directionality of Hermite-Gaussian array beams propagating through atmospheric turbulence, Applied Optics, 2009, 48(22): 4338-4347.

43. Zhouling Ding, Xiaoqing Li*, Jianyong Cao, Xiaoling Ji, Influence of thermal blooming on the beam quality of an array of Hermite–Gaussian beams propagating in the atmosphere. Appl. Opt., 2020 59(34): 10944-10952.

44. Huan Pu, Xiaoling Ji*, Oceanic turbulence effects on long-exposure and short-exposure imaging, Journal of Optics, 2016, 18(10): 105704.

45. Xiaoqing Li, Xiaoling Ji*, et al., Matrix formulation of higher-order moments of partially coherent beams propagating through atmospheric turbulence along a slant path, Journal of Optics, 2013, 15: 125720.

46. Xiaoqing Li, Xiaowen Chen, Xiaoling Ji*, Influence of atmospheric turbulence on the propagation of superimposed partially coherent Hermite-Gaussian beams, Opt. Commun., 2009, 282(1): 7-13.

47. Xiaoqing Li, Xiaoling Ji*, Propagation of higher-order intensity moments through an optical system in atmospheric turbulence, Opt. Commun., 2013, 298: 1-7.

48. Xiaoqing Li, Xiaoling Ji*, et al., Beam quality of radial Gaussian Schell-model array beams, Optics & Laser Technology, 2010, 42(4): 604-609.

49. Yujuan Luo, Xiaoling Ji*, et al., Influence of coma aberration on aperture averaged scintillations in oceanic turbulence, Optics & Laser Technology, 2018, 98: 46-55.

50. Yu Deng, Xiaoling Ji*, Xiaoqing Li, Huan Wang, Ziyue Huang, and Hao Zhang, Beam quality of annular pulsed laser beams propagating through the nonlinear and dispersive atmosphere, IEEE Photonics Journal, 2021, 13(3): 6500110.

51. Peng Liu, Fuwei Chang, Yu Zhao, Zeren Li and Xiudong Sun*. Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures, Optics Express, 2018, 26(2): 1072-1082.

52. Peng Liu, Yu Zhao, Zeren Li and Xiudong Sun*. Improvement of ultrafast holographic performance in silver nanoprisms dispersed photopolymer, Optics Express, 2018, 26(6): 6993-7004.

53. Peng Liu, Linlin Wang, Yu Zhao, Zeren Li and Xiudong Sun*. Holographic memory performances of titanocene dispersed poly (methyl methacrylate) photopolymer with different preparation conditions, Optical Materials Express, 2018, 8(6): 1441-1453.

54. Peng Liu, Linlin Wang, Yu Zhao, Zeren Li and Xiudong Sun*. Cationic photo-initiator titanocene dispersed PMMA photopolymers for holographic memories, OSA Continuum, 2018, 1(3): 783-795.

55. Peng Liu*, Xiudong Sun, Yu Zhao and Zeren Li. Holographic stability and storage capacity on bulk green-light sensitive TI/PMMA materials. AIP Advances, 2019, 9(3): 035034.

56. Peng Liu*, Xiudong Sun, Yu Zhao and Zeren Li. Ultrafast volume holographic recording with exposure reciprocity matching for TI/PMMAs application, Optics Express, 2019, 27(14): 19583-19595.

57. Peng Liu*, Xiudong Sun and Linlin Wang. Holographic response characteristics influenced by an absorptive diffusion polymerization model in bulk TI/PMMAs, Applied Optics, 2019, 58(31): 8622-8630.

58. Peng Liu*, Xiudong Sun and Linlin Wang. Polarization holographic characteristics of TI/PMMA polymers by linearly polarized exposure, Optical Materials, 2020, 107: 109992.

59. Peng Liu*, Xiudong Sun. Holographic Grating Enhancement of TI/PMMA Polymers in the Dark Diffusion Process, Polymers, 2021, 13: 1735.

60. Peng Liu*, Xiudong Sun. Theoretical and experimental investigations of photo-sensitivity and polarization-sensitivity in TI/PMMA polymers, Optical Materials, 2021, 120: 111440.

61. Jia, Xin-Hong; RaoYun-Jiang*; Yuan, Cheng-Xu; Li, Jin; Yan, Xiao-Dong; Wang, Zi-Nan; Zhang, Wei-Li; Wu Han; Zhu, Ye-Yu; Peng, Fei, Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping. Opt. Express, 2013, 21(21): 24611-24619

62. Jia, Xin-Hong; RaoYun-Jiang*; Wang, Zi-Nan; Zhang, Wei-Li; Yuan, Cheng-Xu; Yan, Xiao- Dong; Li, Jin; Wu, Han; Zhu, Ye-Yu; Peng, Fei, Distributed Raman amplification using ultra- long fiber laser with a ring cavity: characteristics and sensing application. Opt. Express, 2013, 21(18): 21208-21217

63. Jia, Xin-Hong; RaoYun-Jiang*; Peng Fei; Wang, Zi-Nan; Zhang, Wei-Li; Wu, Hui-Juan; Jiang, Yun, Random-lasing-based distributed fiber-optic amplification. Opt. Express, 2013, 21(5), 6572- 6577

64. Jia, Xin-Hong; Chang, Han-Qing; Lin, Kai; Xu, Cong; Wu, Jia-Gui*, Frequency-comb-based BOTDA sensors for high-spatial-resolution/long-distance sensing. Optics Express, 2017, 25 (6): 6997- 7007

65. Jia, Xin-Hong*; Chang, Han-Qing; Ao, Lei; Ji, Xiao-Ling; Xu, Cong; Zhang, Wei-Li, BOTDA sensors enhanced using high-efficiency second-order distributed Brillouin amplification. Optics Express, 2016, 24(13): 14079-14085

66. Ma, Hui-Liang; Jia, Xin-Hong*; Lin, Kai; Xu, Cong, High-efficiency DBA-BOTDA with optimized SNR by multiple bandwidths pump modulation. Chinese Optics Letters, 2019, 17 (1): 010603

67. Jia, Xin-Hong*; Ji, Xiao-Ling; Xu, Cong; Wang, Zi-Nan; Zhang, Wei-Li, Analysis of all- optical temporal integrator employing phased-shifted DFB-SOA, Optics Express, 2014, 22 (23): 28530-28536

68. Chang, Han-Qing; Jia, Xin-Hong*; Ji, Xiao-Ling; Xu, Cong; Ao Lei; Wang Zi-Nan; Zhang Wei-Li, DBA-based BOTDA using optical comb pump and pulse coding with a single laser, IEEE Photonics Technology Letters, 2016, 28(10): 1142- 1145

69. Jia, Xin-Hong; Rao, Yun-Jiang*; Wang, Zi-Nan; Zhang, Wei-Li; Ran, Zeng-Ling; Deng, Kun; Yang, Zi-Xin, Detailed theoretical investigation on improved quasi-lossless transmission using third-order Raman amplification based on ultralong fiber lasers, Journal of the Optical Society of America B-Optical Physics, 2012, 29(4): 847-854

70. Jia, Xin-Hong*; Wu, Zheng-Mao; Xia, Guang-Qiong, Detailed theoretical investigation on relative intensity noise reduction enhancement based on reflective SOAs, Optics and Laser Technology, 2012, 44(5): 1240-1246

71. Jia, Xin-Hong; Rao, Yun-Jiang*; Deng, Kun; Yang, Zi-Xin; Chang, Liang; Zhang, Chao; Ran, Zeng-Ling, Experimental demonstration on 2.5-m spatial resolution and 1℃ temperature uncertainty over long-distance BOTDA with combined Raman amplification and optical pulse coding, IEEE Photonics Technology Letters, 2011, 23(7): 435-437

72. Jia, Xin-Hong; Rao, Yun-Jiang*; Chang, Liang; Zhang, Chao; Ran, Zeng-Ling, Enhanced sensing performance in long-distance Brillouin optical time-domain analyzer based on Raman amplification: theoretical and experimental investigation, Journal of Lightwave Technology, 2010, 28(11): 1624-1630

73. Jia, Xin-Hong*; Wu, Zheng-Mao; Xia, Guang-Qiong, Detailed theoretical investigation on enhanced nondegenerate four-wave mixing in passive mode-locked semiconductor lasers, IEEE Journal of Quantum Electronics, 2007, 43(11-12): 1065 -1073

74. Jia, Xin-Hong*; Zhong, Dong-Zhou; Wang, Fei; Chen, Hai-Tao, Dynamic single-mode  and modulation characteristics analyses for λ/4 phase-shifted distributed feedback lasers with chirped grating, Optics Communications, 2007, 279(2): 356 -363

75. Jia, Xin-Hong*, Performance analysis and design of tapered and chirped nonlinear Bragg gratings for application to optical isolators, Journal of the Optical Society of America B- Optical Physics, 2007, 24(10): 2746 - 2751

76. Jia, Xin-Hong*; Zhong, Dong-Zhou; Wang, Fei; Chen, Hai-Tao, Detailed modulation response analyses on enhanced single-mode QWS-DFB lasers with distributed coupling coefficient, Optics Communications, 2007, 277(1): 166 -173

77. Jia, Xin-Hong*; Wu, Zheng-Mao; Xia, Guang-Qiong, Terahertz wavelength conversion based on four-wave mixing in λ/4-shifted DFB lasers: Dynamic range and performance analysis. IEEE Journal of Quantum Electronics, 2007, 43(3-4): 334 -342

78. Jia, Xin-Hong*, Theoretical investigation of gain-clamped semiconductor optical amplifiers using the amplified spontaneous emission compensating effect, Journal of the Optical Society of America B-Optical Physics, 2006, 23(12): 2503-2510

79. Jia, Xin-Hong; Wu, Zheng-Mao; Xia, Guang-Qiong*, Analysis of bistable steady characteristics and dynamic stability of linearly tapered nonlinear Bragg gratings, Optics Express, 2004, 12(13): 2945-2953


【编辑:物电学院】


(微信扫描分享)